Problemas de Valor Inicial con la Transformada de Laplace
Transformada de una Derivada
Si \(Y(S) = \mathcal{L} \{y\:'(t) \}\), entonces
\[\begin{array}{l} \mathcal{L} \{y\:'(t)\} &=& sY(S) - y(0) \\ \mathcal{L} \{y\:''(t)\} &=& s^{2}Y(S) - sY(0) - y(0)\\ \mathcal{L} \{y\:'''(t)\} &=& s^{3}Y(S) - s^{2}Y(0) - sY(0) - y(0)\\ \mathcal{L} \{y^{(n)}(t)\} &=& s^{n}Y(S) - s^{n-1}Y(0) - \cdots - sY^{(n-2)}(0) - y^{(n-2)}(0)\\ \end{array}\]Enjoy Reading This Article?
Here are some more articles you might like to read next: